按钮
按钮
按钮
按钮
按钮

Nature:新冠病毒对Paxlovid耐药的分子机制

 

新冠病毒(SARS-CoV-2)肆虐全球,对人类健康乃至社会经济都造成了空前影响,如何开发治疗新冠的特效药是科学家们面临的极具挑战性的科学问题。目前,靶向病毒蛋白酶的药物在抗新冠药物中占有举足轻重的地位,如辉瑞公司(Pfizer Inc.)开发的新冠口服药Paxlovid(nirmatrelvir/ritonavir组合,奈玛特韦/利托那韦),及紧急授权使用的盐野义公司(Shionogi & Co., Ltd.)的药物Xocova(ensitrelvir,恩赛特韦)等,都是靶向新冠病毒主蛋白酶(Mpro的抗病毒药物。

 

随着靶向病毒蛋白酶药物的广泛使用,新冠病毒作为一种高突变的RNA病毒,是否会对Paxlovid中的抗病毒活性成分奈玛特韦产生耐药性?如果存在耐药的风险,我们将如何应对?这些都是备受关注的重要科学问题。

 

2023年9月11日,上海科技大学免疫化学研究所杨海涛教授、免化所特聘教授/清华大学教授饶子和院士团队与哥伦比亚大学何大一(David D. Ho)院士团队合作,在国际顶尖学术期刊 Nature 上发表了题为:Molecular mechanisms of SARS-CoV-2 resistance to nirmatrelvir 的研究论文,揭示了新冠病毒如何利用两种截然不同的途径对治疗药物产生耐药性的分子机制。

 

 

研究团队曾发现,在奈玛特韦的选择压力作用下,新冠病毒可以通过突变其主蛋白酶上的多个位点获得对奈玛特韦的耐药性,但其背后的精确分子机制仍是未解之谜。利用病毒主蛋白酶的结构对突变位点进行分析发现,耐药突变E166V、F140LS144A位于主蛋白酶底物识别口袋的S1位点,L50F突变在S2位点附近,L167FA193P突变在S4位点,而T21I突变位于S4'位点。综合利用病毒学、生物化学以及结构生物学等多学科交叉手段对以上突变展开研究,该研究首次发现了新冠病毒可以利用两种截然不同的进化途径(如图所示:Evolutionary Routes 1 & 2)对奈玛特韦产生耐药性。

 

新冠病毒采取两种截然不同的进化途径对临床药物产生耐药性

 

第一条进化途径涉及主蛋白酶底物结合口袋的S1S4位点,这些突变可以破坏奈玛特韦与这些位点的结合能力,削弱其对主蛋白酶活性的抑制能力。以其中最突出的E166V突变为例,这个单点突变可以严重破坏奈玛特韦与S1位点的结合,造成耐药水平增加超过200倍。但由于奈玛特韦和天然底物在蛋白酶上的结合位点高度重合,该位点突变也会严重影响病毒自身复制的速率,因此狡猾的新冠病毒同时又进化出第二条进化途径。

 

第二条进化途径涉及主蛋白酶底物结合口袋的S2S4'位点,这些点突变会引起病毒主蛋白酶的活力增加。如位于S2位点的L50F突变和位于S4'位点的T21I突变,它们虽然主要并不影响奈玛特韦的结合,但却可以增强病毒主蛋白酶自身的活性。最终新冠病毒可同时采纳两种进化途径,形成T21I/E166V或者L50F/E166V双突变,在逃逸抗病毒药物攻击的同时又能够保持自身的复制和传播能力。除此之外,该研究还对另外一种靶向主蛋白酶的抗新冠药物恩赛特韦展开了研究,发现新冠病毒也可通过上述耐药机制对恩赛特韦产生耐药,这说明该耐药机制很可能具有普适性。

 

文章来源:

生物世界

 

 

声明:本站文章版权归原作者及原出处所有。本文章系本站编辑转载,文章内容为原作者个人观点,登载该文章的目的是为了学习交流和研究,并不代表本站赞同其观点和对其真实性负责,本站只提供参考并不构成任何投资及应用建议。

本站是一个学习交流和研究的平台,网站上部分文章为引用或转载,并不用于任何商业目的。我们已经尽可能的对作者和来源进行了告知,但是能力有限或疏忽,造成漏登或其他问题,请及时联系我们,我们将根据著作权人的要求,立即更正或删除有关内容。本站拥有对本声明的最终解释权。

首页    盛普前沿    COVID-19    Nature:新冠病毒对Paxlovid耐药的分子机制